

Technol[ogies M](mailto:r.ocone@hw.ac.uk)aking Hydrogen Happen

Raffaella Ocone Institute of GeoEnergy Engineering

Heriot-Watt University Edinburgh EH14 4AS, UK r.ocone@hw.ac.uk

Hydrogen Colours

Research Areas

- \checkmark Catalytic Pyrolysis & Gasification
- \checkmark Hydrogenation & Hydrotreating
- \checkmark High Pressure & Membrane Reactors
- \checkmark Materials Development & Characterisation
- \checkmark High Temperature CO2 Capture

 \checkmark BECCS

Modelling (R Ocone) Experiments (A Sanna)

Current Relevant Projects

2022-2024 KTP, Innovate UK, In collaboration with Alpha Solway (Globus Group), £200k (PI: A Sanna)

2022-2025 Production of Blue H2, Petronas, ~£1M (PI: R Ocone)

PETRONAS Global Technology Centre (PGTC) PACESET

A new technology and research centre has been established by PETRONAS, with the Institute of GeoEnergy Engineering (IGE) at Heriot-Watt University UK campus, to pursue cleaner energy solutions.

The long-term commitment will focus on research and development projects that look into solutions to reduce carbon footprint while optimising hydrocarbon resources though technological advancements and digitalisation.

NINE Projects Ongoing Setting up ELEVEN New Projects

First project on Blue H2 … more on the way ..

Low Carbon H2 Production

IEA, "Hydrogen - Fuels & Technologies - IEA," December 21, 2021

Blue Hydrogen Production via Thermochemical Routes for Application both Downhole and Topside

Evolution of Thermochemical Production of H2

Pyrolysis of Biomass (Ocone, Sanna, Salem) In-situ pyrolysis (Maes, Egya)

Palm oil wastes, source of bioenergy

One of the largest biomass resources is the palm products/wastes. Palm oil wastes is a promising feedstock for biohydrogen production. Palm oil demands are expected to rise to 240 Mt by 2050, resulting in massive amounts of byproducts and wastes. Among bio-oil by products and wastes are empty and fresh fruit bunch, oil palm frond, palm kernel shell, seed shells, palm pressed fibre, ...etc. Additionally, the palm oil accounts only for 10% of the total biomass, while *the residual wastes are estimated by 90%*

6 **annual production, chemical composition, minerals distribution, ash content, etc.Our selection considered a number of properties in a decision matrix based on**

Pyrolysis of Biomass

Methodology

 \checkmark Pyrolysis of biomass (Blue H₂) Feedstock Characterisation Catalyst Screening

 \checkmark In-situ (downhole) pyrolysis optimised for Blue H₂ production In-situ challenges: comparison/differences with in-situ combustion Chemical re-optimisation for Blue H_2 production

ü **Modelling**

Current Interests

Lignin, plastic, catalyst development/evaluation, chemicals and **hydrogen** production, scale-up, TEA

Biomass Pyrolysis/Gasification

Biomass Pyrolysis/Gasification

Thermogravimetric analysis (TGA)

- \checkmark Linseis STA PT 1600 is used for the analysis.
- \checkmark 5 different heating rates are used; (1,5,10,20,&30 °C /min).
- \checkmark Temperature range (up to 900 °C)
- \checkmark Mixtures of (N₂ and CO₂) are used during pyrolysis and reforming of the samples.
- \checkmark Data are used for calculating the kinetic parameters of the samples (A, E, R²).
- \checkmark Collected data (T, gas flowrate, time, heat flow, enthalpy of reaction, mass loss, HDSC signal (µV),etc)

Model

Continuity equation:

Gas phase:
$$
\frac{\partial (\alpha_g \rho_g)}{\partial t} + \nabla (\alpha_g \rho_g \vec{u}_g) = R_g
$$

\n**Solid phase:**
$$
\frac{\partial (\alpha_{s_i} \rho_{s_i})}{\partial t} + \nabla (\alpha_{s_i} \rho_{s_i} \vec{u}_{s_i}) = R_{s_i}
$$

$$
\sum_{i=1}^2 \alpha_{s_i} + \alpha_g = 1
$$

Momentum equation :

Gas phase:
$$
\frac{\partial (\alpha_g \rho_g \vec{u}_g)}{\partial t} + \nabla (\alpha_g \rho_g \vec{u}_g \vec{u}_g) = -\alpha_g \nabla P + \nabla \overline{\overline{t}}_g - \sum_{i=1}^2 \beta_{gs_i} (\vec{u}_g - \vec{u}_{s_i}) + \alpha_g \rho_g \vec{g} + \vec{R}_{s_2g} + \vec{m}_{s_2g} \vec{u}_{s_2g}
$$

\n**Sand phase:**
$$
\frac{\partial (\alpha_{s_1} \rho_{s_1} \vec{u}_{s_1})}{\partial t} + \nabla (\alpha_{s_1} \rho_{s_1} \vec{u}_{s_1} \vec{u}_{s_1}) = -\alpha_{s_1} \nabla P - \nabla P_{s_1} + \nabla \overline{\overline{t}}_{s_1} + \beta_{gs_1} (\vec{u}_g - \vec{u}_{s_1}) + \beta_{s_1s_2} (\vec{u}_{s_2} - \vec{u}_{s_1}) + \alpha_{s_1} \rho_{s_1} \vec{g}
$$

\n**Biomass phase:**
$$
\frac{\partial (\alpha_{s_2} \rho_{s_2} \vec{u}_{s_2})}{\partial t} + \nabla (\alpha_{s_1} \rho_{s_1} \vec{u}_{s_1}) = -\vec{u}_{s_1} \nabla P - \nabla P_{s_1} + \nabla \overline{\overline{t}}_{s_1} + \beta_{gs_1} (\vec{u}_g - \vec{u}_{s_1}) + \beta_{s_1s_2} (\vec{u}_{s_2} - \vec{u}_{s_1}) + \alpha_{s_1} \rho_{s_1} \vec{g}
$$

$$
\begin{aligned}\n\mathbf{D} \mathbf{D} \mathbf{D} \mathbf{S} \mathbf{B}^{T} &= -\alpha_{S_{2}} \nabla P - \nabla P_{S_{2}} + \nabla \left(\alpha_{S_{2}} \rho_{S_{2}} \vec{u}_{S_{2}} \vec{u}_{S_{2}} \right) \\
&= -\alpha_{S_{2}} \nabla P - \nabla P_{S_{2}} + \nabla \overline{\overline{\tau}}_{S_{2}} + \beta_{g_{S_{2}}} \left(\vec{u}_{g} - \vec{u}_{S_{2}} \right) + \beta_{S_{2}S_{1}} \left(\vec{u}_{S_{1}} - \vec{u}_{S_{2}} \right) + \alpha_{S_{2}} \rho_{S_{2}} \vec{g} + \vec{R}_{g_{S_{2}}} - \vec{m}_{S_{2}} \vec{g} \vec{u}_{S_{2}} g\n\end{aligned}
$$

Granular temperature:

$$
\text{Solid phase:} \qquad \frac{3}{2} \left[\frac{\partial (\alpha_{s_i} \rho_s \theta_{s_i})}{\partial t} + \nabla (\alpha_{s_i} \rho_s \theta_{s_i}) \vec{u}_{s_i} \right] = \left(-P_{s_i} \overline{\vec{I}} + \overline{\vec{\tau}}_{s_i} \right) : \nabla \vec{u}_{s_i} + \nabla (\kappa_{\theta_{s_i}} \nabla \theta_{s_i}) - \gamma_{\theta_{s_i}} + \sum_{k=1}^2 \phi_{ks_i}
$$

X. Yu, Y. Makkawi, R. Ocone, M. Huard, C. Briens, F. BerrutiFuel Proc Tech, 126, 366-382, 2014 12

Model

Gas species conservation
$$
\frac{\partial (\alpha_g \rho_g Y_{i,g})}{\partial t} + \nabla (\alpha_g \rho_g \vec{u}_g Y_{i,g}) = -\nabla \cdot \alpha_g \vec{f}_{i,g} + (\dot{m}_{i,gs_2} - \dot{m}_{i,s_2g}) + R_{i,g}
$$

diffusion flux of species i
$$
\vec{f}_{i,g} = -(\rho_g D_{i,g} + \frac{\mu_t}{Sc_t}) \nabla Y_{i,g} - D_{T,i,g} \frac{\nabla T}{T}
$$

Energy equation

Gas phase:
$$
\frac{\partial (\alpha_g \rho_g h_g)}{\partial t} + \nabla (\alpha_g \rho_g \vec{u}_g h_g) = \alpha_g \frac{\partial P_g}{\partial t} + \bar{\tau}_g : \nabla \vec{u}_g - \vec{q}_g + S_g + Q_{gs_1} + Q_{gs_2} + (m_{s_2g} h_{s_2g} - m_{gs_2} h_{gs_2})
$$

\n**Sand phase:**
$$
\frac{\partial (\alpha_{s_1} \rho_{s_1} h_{s_1})}{\partial t} + \nabla (\alpha_{s_1} \rho_{s_1} \vec{u}_{s_1} h_{s_1}) = \alpha_{s_1} \frac{\partial P_{s_1}}{\partial t} + \bar{\tau}_{s_1} : \nabla \vec{u}_{s_1} - \vec{q}_{s_1} + Q_{s_1g}
$$

\n**Biomass phase:**
$$
\frac{\partial (\alpha_{s_2} \rho_{s_2} h_{s_2})}{\partial t} + \nabla (\alpha_{s_2} \rho_{s_2} \vec{u}_{s_2} h_{s_2}) = \alpha_{s_2} \frac{\partial P_{s_2}}{\partial t} + \bar{\tau}_{s_2} : \nabla \vec{u}_{s_2} - \vec{q}_{s_2} - S_g + Q_{s_2g} + (m_{gs_2} h_{gs_2} - m_{s_2g} h_{s_2g})
$$

The intensity of the heat exchange between the gas and solid phase

$$
Q_{s_i g} = h'_{s_i g} A_i (T_{s_i} - T_g)
$$

 $h'_{s_i g} = \frac{\kappa_g Nu_{s_i}}{d}$ The heat transfer coefficient $h'_{s_i g} = \frac{g g m_i}{d_{s_i}}$

Nusselt number $Nu_{s_i} = (7 - 10\alpha_g + 5\alpha_g^2)(1 + 0.7Re_{s_i}^{0.2}Pr^{1/3}) + (1.33 - 2.4\alpha_g + 1.2\alpha_g^2)Re_{s_i}^{0.7}Pr^{1/3}$

Closure Equations

A one-global reaction scheme is used to for the formation of various pyrolysis products as follows (*Boateng and Mtui, 2012***)**

$$
BIOMASS \rightarrow \alpha_1CHAR + \alpha_2 BIO. OIL + \alpha_3 H_2O + \alpha_4 H_2 + \alpha_5 CO + \alpha_6 CO_2 + \alpha_7 CH_4
$$

α_1	α_{2}	α_{3}	$\alpha_{\rm A}$	α_{5}	α_{G}	α	
0.138	0.805	0.15	0.003	0.035	0.018	J.008	

Stoichiometric coefficient used in the pyrolysis reaction (*Boateng and Mtui, 2012*)

 $r = k \alpha_{s_2} [C_{vol}]^{0.67}$ $k = A exp[-E/RT]$ *Pasangulapati,2012*

Pre-exponential factor A and the activation energy E used are 2.16 \times 10⁷ s⁻¹ and 1.037 \times 10⁸ J/Kmol

Comparison of the predictions and experimental data from the literature for the mass fraction of the pyrolysis products at steady state condition (a) Overall products (b) non- condensable gases. See further details on the operating conditions in the comments table.

Comments (1) Reactor (Ding et al, 2012) [48] : 0.1 m diameter and 1.1 m height; biomass: Palm shell of 280 µm diameter; pyrolysis temperature of 520 °C; heated section of 0.2 m.

(2) Reactor (Punsuwan and Tangsathitkulchai, 2014) [47]: 0.039 m diameter and 3 m height; biomass: acid treated wheat straw of 180~280 µm diameter; pyrolysis temperature of 400 oC.

(3) Reactor (Boateng and Mtui, 2012) [22]: 0.075 m diameter and 0.5 m height; material: Switch grass of 500 µm size; wall temperature 480-550 °C.

PPE Waste Pyrolysis

- Pyrolysis offers an effective means for recovering energy and chemicals through carbon rearrangement, eradicate waste management problems
- It does not need earlier separation of dissimilar waste plastics; hence a mix of plastics can also be converted into crude bio-oil
- It is not affected by bio-contamination since operates at high temperature and without need of sorting

Market Opportunity

McKinsey & Company has predicted that chemical recycling will contribute to a 60 billion USD growth in the profit pool of the petrochemical and plastics sectors between 2016 and 2030.

GLOBAL POLYMER DEMAND AND HOW IT COULD BE RECOVERED, MILLIONS OF METRIC TONS

Source: How plastics waste recycling could transform the chemical industry. DECEMBER 2018, MCKINSEY ON CHEMICALS

Pyrolysis Option

- \checkmark High flexibility and modularity
- \checkmark Lower capex and operating issues than gasification
- \checkmark Potential for recovering metal
- \checkmark Pyrolysis particularly attractive for PP/PE for absence of O₂ and low char yield
- \checkmark Carbon distribution into products is controllable by altering the operational parameters and adopting catalysts

Future Work

Orange H2 production

There are approximately 100 trillion tonnes of hydrogen that could be extracted from the subsurface within 1020 kg of peridotites in the upper surface (\sim 7km) – **COMBINING H2 PRODUCTION with CO2 STORAGE**

Future Work

Chemical looping SMR

The technology could be easily integrated with gasification or pyrolysis.

Table 8: Representative catalysts for sorbent enhanced SMR process.

Sorbent enhanced SMR

CO2 sorbents are added during the SMR process. The equilibrium drives the shift of the WGS and SMR reactions towards hydrogen production. The process shows higher performance with potential to reduce the reactor volume.